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Abstract

The routine use of whole-genome sequencing (WGS) as part of enteric disease surveillance is substantially
enhancing our ability to detect and investigate outbreaks and to monitor disease trends. At the same time, it is
revealing as never before the vast complexity of microbial and human interactions that contribute to outbreak
ecology. Since WGS analysis is primarily used to characterize and compare microbial genomes with the goal of
addressing epidemiological questions, it must be interpreted in an epidemiological context. In this article, we
identify common challenges and pitfalls encountered when interpreting sequence data in an enteric disease
surveillance and investigation context, and explain how to address them.
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Introduction and Terminology

Detection and investigation of outbreaks through
molecular-based surveillance of foodborne pathogens

by pulsed-field gel electrophoresis (PFGE) has proven to be a
highly cost-effective tool for food safety (Scharff et al.,
2016). Whole-genome sequencing (WGS) promises to bring
that effectiveness to a new level, and open up new opportu-
nities for understanding trends in antimicrobial resistance,
virulence, and foodborne microbial ecology. WGS has made
it possible to detect more outbreaks with fewer cases ( Jack-
son et al., 2016; Moura et al., 2017), and to link human illness
to specific foods or production environments with greater
confidence than ever before. However, early hopes that WGS
would drastically simplify the identification of contaminated
foods and tracking them to their sources have largely been
replaced by the realization that WGS also reveals the vast
complexity of microbial interactions with humans, animals,
plants, and the environment. In doing so, WGS also opens up
the door for answering questions about foodborne pathogens
and potential prevention activities that would not have been
answerable before.

WGS analysis of foodborne pathogens such as Salmonella
spp. and Listeria monocytogenes has been widely used to
identify possible food or environmental sources of outbreaks

initially recognized by some other means, for example, lab-
oratory surveillance by less discriminatory methods such as
PFGE or by citizen reporting. Increasingly, WGS is being
used as a primary outbreak detection tool, allowing detection
of widely dispersed outbreaks that might not be otherwise
identified (Besser et al., 2018). This is accomplished by
comparing the genomes of pathogens isolated from patients
to identify clusters of disease that suggest outbreak occur-
rence, and conducting interviews to find a common exposure,
such as consuming the same contaminated food product.
WGS and other molecular methods are also used to pre-
sumptively link results from routine food monitoring pro-
grams, such as those conducted at USDA and FDA through
the Genome TrakR network, to seemingly ‘‘sporadic’’ cases
(Allard et al., 2016).

WGS also makes it possible to track trends associated with
pathogen virulence and antimicrobial resistance, and it is in-
creasingly being explored as a tool for food source attribution
(de Knegt et al., 2016). The most common analyses used for
this purpose are high-quality single-nucleotide polymorphism
(hqSNP) analysis (where SNP positions are filtered based on
sequence quality, and mobile and phage elements are gener-
ally masked), core genome multilocus sequence typing
(cgMLST, a gene-by-gene analysis using only core genes), or
whole-genome MLST (wgMLST; MLST using both core and
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accessory genes). Details, relative merits, and limitations of
these methods are described elsewhere (Katz et al., 2017;
Nadon et al., 2017; Jagadeesan et al., 2019).

Differences between genomes are most commonly visu-
alized as SNP/allele matrices, which provide pairwise com-
parison information, and phylogenetic trees that predict
evolutionary relationships between strains. These data are
used to identify disease clusters or clusters between cases,
food or environmental isolates. Clusters have classically been
defined in terms of space and time (Last, 1983), but WGS has
the potential for extending the boundaries of what constitutes
a cluster. The word ‘‘outbreak’’ is generally used to describe
a cluster when an epidemiological link is identified.

Finally, outbreaks are described as ‘‘clonal’’ or ‘‘poly-
clonal.’’ In molecular epidemiology, the term ‘‘clone’’ is
usually used to describe a group of independently isolated
microorganisms that share so many phenotypic and geno-
typic characteristics that the most likely explanation is that
they have a common origin (Struelens, 1996; van Belkum
et al., 2007). When isolates are characterized by WGS, a
clone corresponds to a branch on a phylogenetic tree. In this
context, a clone corresponds to the related concept ‘‘clade.’’
The common ancestor may be anywhere on the phylogenetic
tree of life, and when studying populations one can define any
number of subclones within clones. Therefore, in common
usage the terms ‘‘clone’’ and ‘‘clade’’ are employed to define
isolates having a recent common ancestor, with ‘‘recent’’
meaning bounded by genetic distance and/or epidemiologic
parameters. Although there are no absolute boundaries of
genetic distance in the common-use clone definition, the
distance is informed by a range of ecological considerations,
and is initially usually defined using organism-specific rule-
of-thumb genetic distance cutoff values (e.g., alleles or
SNPs) derived from outbreak surveillance data, as described
earlier. These boundaries may widen or shrink as new epi-
demiological information becomes available to inform the
‘‘likeliness’’ of a common origin.

The ecology of enteric outbreaks can be complex, and
interpretation of WGS for this purpose requires understand-
ing of underlying assumptions and limitations, the use of
graphical representations such as phylogenetic trees and
similarity matrices, implications of analysis method and
quality metrics, and approaches to detecting and triaging
clusters.

Disease and Outbreak Ecology

WGS is a powerful tool to help resolve epidemiological
relationships, but must be interpreted in the context of the
underlying disease and outbreak ecology. Enteric disease
agents and resulting outbreaks vary widely in terms of their
host range, reservoir, prevalence, mutation rates, environ-
mental stability, epidemic potential, consumer behaviors,
infective dose, complexity of the associated food chain, and
transmission mechanisms. Outbreaks are classified by how
the disease spreads through a population, and even seemingly
simple outbreaks can be complicated when viewed at a mo-
lecular level. A ‘‘point-source’’ outbreak is a relatively
straightforward transmission pathway characterized by a
single point of introduction over a short period of time with
most cases occurring within the same incubation period
(Centers for Disease Control Prevention, 2006). A simple

example is a group of restaurant patrons who become in-
fected after consuming food contaminated on a single day by
an ill restaurant food handler shedding a genetically homo-
geneous strain. It should be noted that the term ‘‘point
source’’ refers to the transmission mechanism but not the
agent, and does not necessarily imply transmission of a ho-
mogeneous or even a single agent. However, in this scenario,
an infected food handler often serves as an evolutionary
‘‘bottleneck’’ resulting in low isolate diversity (Grad et al.,
2012), not unlike the process used in microbiology labora-
tories to obtain pure cultures by picking and passing indi-
vidual colonies. The same type of genetic ‘‘bottleneck’’ may
occur in other ecological niches.

Once established in each of the symptomatic or asymp-
tomatic human hosts, the pathogen evolves to a greater or
lesser degree along multiple separate evolutionary pathways.
Replication occurs throughout the incubation period and
course of illness, and the genome may be characterized at the
point in the pathway where culture is performed. At the se-
quence level, the pathogens transmitted by the food handler
and isolates detected in each of the patrons may differ from
each other and from the initially transmitted pathogens, the
degree of which is dependent on organism mutation rates and
other factors. Therefore, the pathogen transmitted to the pa-
trons may not be the same as the pathogen cultured from the
food handler, as the transmission and detection steps may be
separated by many rounds of replication. However, we would
expect all of the isolates from this outbreak to be less different
from each other than isolates that developed along an entirely
different pathway, say, among cases in an unrelated outbreak.

Real-world foodborne and enteric disease outbreaks are
often much more complex than the simple scenario described
above. One or more agents or vehicles may be involved, and
one, multiple, or continuous transmission events may occur
that range from highly clonal, such as the restaurant scenario
described above, to polyclonal events such as mass contam-
ination of fruit due to inadequate disinfection of production
equipment (McCollum et al., 2013), to outbreaks involving
multiple species or even multiple agents from different mi-
crobial kingdoms such as outbreaks due to fecal contamina-
tion of ground water (Gallay et al., 2006). Zoonotic disease
outbreaks, such as those associated with direct animal con-
tact, may exhibit higher genetic diversity than isolates from a
typical point-source outbreak (Basler et al., 2016; Bosch
et al., 2016).

Adding to potential outbreak complexity, the chain of
transmission may have links that are known, unknown, and
unknowable. For example, Shiga toxin–producing Escher-
ichia coli (STEC) can be passed from a primary reservoir
such as cattle through food vehicles to people, from people to
intermediary food vehicles, and a wide variety of other
transmission mechanisms such as person to person, person to
animal, animal- to person, and animal to plant (Medus et al.,
2006). Vehicles may migrate or mix, such as cattle carrying
STEC that are transported, sold, and resold before slaughter,
or produce lots that are intermingled before retail.

Different enteric disease agents have different host ranges,
evolve at different rates, and survive and replicate variably in
different environments, which in turn impacts transmission
mechanisms and sequencing interpretation. The generation
time of E. coli in culture can be as short as 15 min, which
means that E. coli in a temperature-abused food theoretically
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may go through 96 rounds of replication per day. As a result,
isolate diversity tends to increase over time. However, the
opposite can also occur as bacteria may persist in a geneti-
cally quiescent state in biofilms or other sequestered envi-
ronments. An extreme example of apparent bacterial
quiescence is the 1998 and 2008 outbreaks of Salmonella
Agona associated with dry cereal produced in a single pro-
cessing plant where the PFGE type did not change in the
intervening 10 years, potentially due to desiccation in a
protected site within the production environment (Russo
et al., 2013). WGS is a powerful tool for teasing apart these
complex relationships, but interpretation must always be
made in the context of underlying ecology.

Primary Assumptions and Their Limitations

WGS is a tool used to infer association or lack of associ-
ation between illness-causing microorganisms found in
people, specific foods, or food environments. However, as-
sociation should not be confused with causality, and rela-
tionships inferred by characterizing pathogens are considered
by themselves ‘‘hypotheses’’ not ‘‘proof.’’ WGS greatly in-
creases the likelihood that the hypotheses are correct com-
pared with earlier methods, but additional lines of evidence
are always required to establish cause and effect. To under-
stand this uncertainty, it is necessary to closely examine the
implicit assumptions.

A central assumption underlying the use of WGS (or any
subtyping method) for outbreak detection and investigation is
that cases infected by pathogens that are phylogenetically
close are more likely to have a recent common ancestor and
have shared a common exposure (such as the same contam-
inated food or food supplier) than cases infected by strains
that are more distantly related. The same assumption is used
to link findings in people to those in foods, animals, or the
environment. In the simple scenario above involving an ill
food handler, we would expect the isolates from patrons, the
food handler, and any positive isolates from implicated food
vehicles to be indistinguishable or closely related (e.g., zero
to five allele differences in a cgMLST analysis). Allele dif-
ferences greater than zero are not unexpected among cases
that are truly related, as the pathogens in each of the cases
replicate and independently evolve to some degree. In addi-
tion, small sequencing or analysis errors may produce minor
allele differences.

Close phylogenetic relatedness predicts some relationship
between the people, or between people and foods, as the
likelihood of random identity or convergent evolution among
millions of base pairs of genetic code would be exceedingly
low. However, the inference is not perfect because microbial
phylogeny (the genetic relationship between strains) is not
the same as epidemiological association (linkage in the chain
of transmission). The relationship between phylogeny and
transmission networks can be complex, and has been de-
scribed elsewhere (Klinkenberg et al., 2017). For purposes of
this discussion, the important difference is that phylogenetic
relatedness does not account for unrecognized intermediary
steps in the chain of transmission. For example, a food han-
dler harboring an outbreak strain may not have been directly
responsible for the outbreak, but could have become ill from
a contaminated and improperly stored ingredient in the res-
taurant, which was later consumed by patrons (Fig. 1). To

determine cause and effect, other epidemiological informa-
tion is necessary, such as information that patrons ate meals
prepared by the food handler, became ill after an appropriate
incubation period, and that data from other cases were not in
conflict with the hypothesis.

The imperfect relationship between phylogeny and trans-
mission due to unrecognized intermediates also limits the
investigator’s ability to predict the direction of transmission
from phylogenetic information alone. In the simple scenario
above, we would expect all isolates to have a common an-
cestor, but the isolate from the food handler may or may not
be represented as the common ancestor even though he/she is
a direct source of the patrons’ illnesses (through food vehi-
cles). This is because the pathogen involved in the trans-
mission event may not be the same as the isolate detected in
the food handler or the isolates detected in the patrons. In
addition to potential pathogen genetic heterogeneity within
each host, many rounds of replication may separate the
transmission and detection events.

In epidemiological terms, WGS is primarily used to refine
the case definition, which is the set of criteria used to specify
which individuals are included in a study or outbreak in-
vestigation. This follows from the primary assumption that
phylogenetic relatedness is proportional to likelihood of as-
sociation. Case definitions are important for detecting and
solving outbreaks because they are used to separate outbreak
signals from background noise. The signal-to-noise ratio
problem is most important when outbreak agents and out-
break vehicles are common (Besser, 2013). For example,
egg-associated outbreaks due to Salmonella enterica serovar
Enteritidis are difficult to solve in the United States without
subtyping because both Salmonella Enteritidis infection and
egg consumption are common. Any misclassified cases in-
cluded in the study (e.g., ill people in an outbreak investi-
gation who are not truly part of the outbreak) dilute measures
of association, such as an odds ratio in a case–control study.
However, if the agent is uncommon, the vehicle is uncom-
mon, or there are a very large number of cases, subtyping may
not be absolutely necessary. For example, the 2011 outbreak
of listeriosis associated with cantaloupe involved multiple
serotype and PFGE combinations, but listeriosis is a rare
disease and the case count was high, allowing identification
of the exposure before molecular analysis (Laksanalamai
et al., 2012; McCollum et al., 2013). By grouping cases that
are most likely to share an epidemiological association and
excluding cases less likely to share an association, the
strength of outbreak signals increases, and the number of
cases needed to solve outbreaks is reduced. This allows
outbreaks to be solved earlier when the opportunity for pre-
vention is the highest.

Take Home Messages:

� WGS relatedness can provide a hypothesis for as-
sociation, but ‘‘proof’’ always requires some level
of additional information.
� Highly related isolates are likely to have a recent

common ancestor, but the direction of transmission
cannot be assumed.
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A second cardinal assumption is that outbreaks are pri-
marily clonal. While some outbreaks are clearly clonal, as
described earlier this is not always the circumstance, which
means that the existence of genetic distance cutoff values for
inclusion or exclusion of cases from outbreaks that would be
applicable for every setting is a biological impossibility.
However, for practical detection of widespread outbreaks we
assume that at least some subset of cases appear monoclonal,
and these cases are used to focus the ensuing epidemiological
investigation.

Once a cluster is detected and supporting epidemiological
and trace-back information is gathered, it may be justified to
expand the WGS-based case definition (stringency lowered)
to determine if additional cases can be found that may be
outbreak associated, which increases the study sensitivity.
Increasing sensitivity may be important for solving outbreaks
when they are small, for linking outbreak data to other types
of information, such as product testing and trace-back data,
and for determining the scope of an outbreak (Reingold,
1998). Expanding the case definition can be accomplished
with genomic data by evaluating cases in different tree nodes
moving from the ‘‘leaves’’ toward the ‘‘trunk,’’ or by using
different digits in strain nomenclature such as SNP addresses
used by Public Health England (Inns et al., 2017) or ‘‘allele
codes’’ used by PulseNet USA (Nadon et al., 2017). Ex-
pansion of the case definition can also be triggered by other
types of laboratory or epidemiology data, such as culture
findings from implicated food or epidemiologically linked
cases.

Although clustering by whole-genome phylogeny has be-
come the standard in foodborne disease outbreak detection,
WGS also provides an opportunity to detect clusters related
only by other factors such as antibiotic resistance or plasmid
content. For example, in the 2016–2018 outbreak of multidrug-

resistant Campylobacter jejuni associated with puppy expo-
sure, a common thread was antibiotic prescribing practices,
which presented as a common resistance profile in geneti-
cally diverse isolates (e.g., multiple clades with large allele
differences) (Montgomery et al., 2018). Although nature
often defies our desire for simplicity, the flexibility, resolu-
tion, and evolutionary model of WGS uniquely provides
tools needed to unravel nature’s complexities for public
health action.

Understanding and Using Phylogenetic Trees

Tree diagrams are used to visualize the relationship be-
tween genomes, and commonly serve as primary outbreak
and investigation tools. The process of tree building starts
with cluster analyses including distance-based hierarchical
methods (e.g., single linkage, UPGMA), which are used for
character (alphanumeric) data generated for gene level
analysis such as cgMLST, and nonhierarchical methods (e.g.,
maximum likelihood), which are employed with sequence
data (e.g., A,T,C, and G’s) used for SNP analyses. Details of
clustering methods are presented elsewhere (Baldauf, 2003).
Tree diagrams may be rooted, which means that the most
recent common ancestor of all the isolates in the analysis
group is inferred, and represented as the ‘‘ancestral node.’’
Unrooted trees show relatedness between strains without
inferring ancestry. Rooted trees are best for visualizing the
relationships between isolates, and are the most commonly
used representation in foodborne disease surveillance. Un-
rooted trees are preferred for visualizing broad trends such as
clonal expansion in time or space.

FIG. 1. Transmission networks (left) include both sampled (dark gray circle) and unsampled (clear circle) events leading
to a phylogenetic tree (right) based on only samples (light gray circle). (Courtesy of Trevor Bedford).

Take Home Message:

� WGS improves our ability to detect and solve out-
breaks, but it is not always necessary to ‘‘prove’’ an
association.

Take Home Messages:

� Genetic distance cutoff values are useful tools for
WGS cluster detection, but cannot be used by
themselves to definitively exclude cases.

� WGS makes it possible to adjust the specificity and
sensitivity of the case definition to answer different
questions in the course of outbreak detection and
investigation.
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In rooted tree diagrams, isolates are most commonly de-
picted as the ‘‘leaves’’ at the end of horizontal ‘‘branches’’
whose length is proportional to genetic distance to a ‘‘node’’ or
theoretically most common ancestor (Fig. 2). In this depiction,
the vertical lines represent the relationship between ‘‘bran-
ches,’’ but their lengths are arbitrary. Numbers shown on ver-
tical lines may represent median and range of allele differences
(e.g., cgMLST analysis) or SNP differences (e.g., hqSNP
analysis). Trees generated from SNP analyses may include
‘‘bootstrap’’ values, which predict the likelihood that the
grouping is correct as represented. The ‘‘tree’’ does not predict
which isolate represents a common ancestor to another isolate
due to inherent uncertainty, as described earlier. The limitations
of two-dimensional representations make it possible for two
isolates to be more ‘‘related’’ to each other than a third isolate
due to their sharing a recent common ancestor, but more
‘‘similar’’ to the third isolate, which has less genetic differ-
ences. What this means for interpretation is that the broad
trends may be true (e.g., which genomes are generally related),
but other types of information, such as epidemiological data,
are needed to further clarify specific relationships. SNP or allele
matrices (Fig. 3) present pairwise differences between isolates,
but are not used to visualize the overall population structure.

How Does WGS Differ from Earlier Subtyping
Methods, and Does ‘‘Whole-Genome Sequencing’’
Involve the Whole Genome?

Earlier methods such as PFGE and multilocus variable
number tandem repeat analysis (MLVA) share with WGS the
basic assumptions described above. WGS differs from the
earlier methods primarily in the strength of phylogenies built
on the molecular data and strain resolution. Phylogenies are
built upon mathematical models of evolutionary relation-
ships, and the strength of the evolutionary model is not equal
for all subtyping methods. Although criteria were developed
in the 1990s for assessing the relatedness of isolates using

PFGE band differences (Tenover et al., 1995), the method
was based on indirect inference of the underlying sequence
information, which introduces considerable uncertainty. For
this reason, the use of the relatedness measures other than
‘‘indistinguishable’’ for PFGE has been discouraged in Pul-
seNet (Barrett et al., 2006). Without the option to include
‘‘closely related’’ strains in the case definition, a larger number
of total cases are needed with PFGE to detect outbreak signals
that can be acted upon. WGS methods use sequence data di-
rectly to construct phylogenies, greatly reducing uncertainty
and allowing inclusion of closely related strains in the case
definition. This flexibility makes it possible to detect and solve
very small outbreaks with two to three cases. The greater
resolution of WGS also reduces the number of cases needed
to detect and solve outbreaks. Greater resolution makes it
possible to exclude cases less likely to share an epidemio-
logical association, which in turn increases the strength of
association measures.

It should be noted that most (but not 100%) of the DNA
present in a sample is sequenced, but not all regions can be
assembled with current technology, and different types of
WGS analyses utilize more or less of the available sequence
information. Loci evaluated in a cgMLST analysis are gen-
erally limited to predefined coding regions that are common
(within some tolerance level) to all members of the taxo-
nomic group of interest, and generally do not include mobile
elements and other less stable loci. wgMLST uses a greater
proportion of the genome, which can be helpful in answering
certain epidemiological questions, but can also introduce
uncertainty due to overclassification and instability. SNP
analyses are not limited to predefined or coding loci, but are
limited to regions that each members of the query group share
with the reference genome used for SNP calling. If the re-
quired reference strain is not close to the query isolates the
number of shared loci will be small. In addition, only single-
nucleotide polymorphisms are evaluated, mobile elements
and other rapidly evolving regions are generally excluded
from SNP analyses, and in some analyses only loci shared
among all members of the query group are considered. For
both MLST and SNP analyses, only assembled regions are
assessed. With WGS, multiple types of sequence analyses
may be performed as investigators are not limited to one
particular analysis or one level of resolution.

How Much Resolution Is Needed? Is More Better?

As one increases the proportion of the genetic content used
in a WGS analysis, an increasing amount of variation is
captured. If too little or the wrong information is captured by
the analysis, outbreak signals are obscured due to inclusion of

FIG. 2. Anatomy of a phylogenetic tree: horizontal lines and numbers represent relative genetic distance.

FIG. 3. An allele matrix, pairwise comparison of isolates.
Shading is based on a cutoff of <7 allele differences.
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unrelated cases in the study that create statistical noise (e.g.,
unexplained variability). Too much resolution results in
overclassification, a different sort of noise, wherein every
case potentially appears different from every other case. To
make sense of this type of information, some sort of re-
grouping of the data is necessary. For this reason, rule-of-
thumb relatedness cutoff values are used. For this process to
be effective, it is necessary for the genetic elements used in
the analysis fit into the phylogenetic model. For example,
although mobile elements represent a potentially useful
source of variation in bacteria they are generally excluded
from analyses because mutations due to mobile elements
occur at a different rate than chromosomal elements, increase
uncertainty in the analysis, and using them in the phylogeny
may distort the represented genetic relationships. However,
mobile elements are one of the primary markers in PFGE and
contribute to its sensitivity ( Jordan and Dalmasso, 2015).

The optimal amount and type of variation required depend
on the epidemiological question being asked. For example, it
has been proposed that WGS may be useful for food source
attribution, but only by limiting the amount and type of data
used to avoid a deleterious signal to noise ratio (de Knegt
et al., 2016). Groups have been using machine learning
methods to identify specific genomic loci for use in this type
of analysis (Zhang et al., 2019), excluding potentially con-
founding noise. Therefore, ‘‘more’’ is not necessarily ‘‘bet-
ter,’’ and the right amount of resolution depends on the
question being asked.

In PulseNet International, gene-by-gene approaches such
as cgMLST have been proposed as the strain-typing infor-
mation most likely to be useful for identifying dispersed
outbreaks (Nadon et al., 2017). In situations where specific
epidemiological questions need to be addressed, additional
analyses may be used. For example, if a subcluster of cases
nearly identical by cgMLST appear to differ from other cases
in some way, such as having different demographic, antibiotic
usage, exposure, or geographic characteristics, systematic
differences can be explored by adding other types of analyses,
such as wgMLST, SNP analysis, or plasmid analysis.

Finally in some situations, phylogeny has been used as a
‘‘molecular clock.’’ For example, sequence data were used to
estimate elapsed time from exposure to sample collection in a
patient infected with polio from a vaccine-derived strain
(Alexander et al., 2009). While such analyses can theoreti-
cally be conducted with foodborne agents such as Salmonella
or STEC, investigators should take into account varying
growth and mutation rates in known or unknown environ-
ments and transmission steps, which could confound attempts
at interpretation.

How Does ‘‘DNA Fingerprinting’’ of Pathogens
by WGS Differ from ‘‘DNA Fingerprinting’’ Methods
Used for Humans?

WGS greatly increases confidence in strain associations
when compared with earlier methods, but can confidence

reach levels seen in ‘‘DNA fingerprinting’’ used for human
forensics, and can confidence be similarly quantified? Both
activities are used to assess similarity or distance between
genomes, and both require other lines of evidence to ‘‘prove’’
an association. However, in human populations the denom-
inator (number of humans) and allele frequencies can be
accurately estimated and are fairly stable, making it possible
to calculate the probability that two samples are from the
same person (or an identical twin) to a high degree of cer-
tainty using an MLVA-like analysis. In microbial popula-
tions, it is possible to calculate the likelihood of genetic
association within a highly defined population, such as spe-
cific isolates in a phylogenetic analysis (see earlier ‘‘boot-
strap value’’ discussion), but it is not possible to assess allele
frequencies in the broader microbial populations due to
constant genetic change, complex ecology, and an unknown
denominator. It is therefore not possible to calculate an exact
probability of the relationship of two isolates from their al-
lelic profile. In addition, human DNA does not replicate
outside the human body, and most genetic changes occur
during sexual reproduction, with a generation time of *25
years, while microbial life may replicate in multiple hosts or
environments, have complex transmission pathways with
known and unknown links, and generation times that are
extremely short when measured against our own.

While the chance of error of a WGS match cannot be
independently calculated, the p-value of analytical studies
represents the probability that the association (e.g., between a
group of illnesses and a particular food) can be explained by
chance alone. For example, a p-value of 0.001 is equivalent to
saying that there is a 1 in 1000 chance of statistical error. As
in any epidemiological investigation, confounding and other
types of errors must also be considered. In conclusion, while
DNA ‘‘fingerprinting’’ methods are used for both human
forensics and foodborne disease surveillance and outbreak
detection, interpretation for human forensics is more straight-
forward and quantifiable due to reduced levels of inference, a
simpler ecology, and defined allelic denominator.

Interpretation of Individual Findings Within a
WGS-Defined Cluster (Including Historical Findings)

Due to the high specificity and evolutionary models used,
there is less opportunity for misclassification of cases using
WGS analysis than earlier methods. Therefore, ‘‘matches’’
between isolates strongly suggest some relationship, whether
separated in time. For example, WGS is making it possible to
recognize persistence problems due to contaminated food
production or preparation environments (Elson et al., 2019).

Although conclusions can be reached about groups of
cases with high certainty in outbreaks, the same cannot be
automatically assumed about any individual finding within
the group. In statistics, this is known as the ecological fallacy.
What this means in practical terms is that simply being part of
a WGS cluster (e.g., a cluster of human cases with or without
food/environmental findings) strongly suggests a common
link but does not by itself prove an association with the rest of
the group. This is due, as described earlier, to potential un-
recognized intermediates that could confound a hypothesis of
direct connection. Therefore, some level of additional infor-
mation is needed. How much additional information depends
on multiple factors, such as the commonness of the agent or the

Take Home Message:

� The optimal amount of resolution in WGS analysis
depends on the question being asked, and more is
not necessarily better.
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suspected vehicle (Besser, 2013). For example, for a WGS
cluster involving a relatively rare exposure and/or agent it
may be sufficient to know that a case consumed or could
have consumed the implicated product, but the same may
not be true for a very common agent or common exposure.

Analysis Quality and Interpretation

The quality of WGS analyses can impact interpretation by
increasing false association or nonassociation of isolates. In-
cluding poor sequences, for example, with borderline-to-low
coverage, poor-quality scores, or shorter than expected aver-
age read lengths, in the SNP analysis can result in fewer po-
sitions being considered for pairwise comparisons, and hence
reduced resolution and increased likelihood of false associa-
tion. Contamination, particularly same-species contamina-
tion (e.g., Salmonella with Salmonella), can cause artificial
cgMLST allele profiles, and result in erroneous placement of
the sequence in the phylogeny and false association and/or
nonassociation. It is therefore important to evaluate quality
metrics, not just for the raw sequences entering the analyses
but also for the analyses themselves. This is especially im-
portant when sequences to be included in the analysis are
generated by multiple participants in a network of laboratories.

Postanalysis metrics such as percentage of reads mapped
back to the reference, percentage of bases masked, and the
number of alleles detected can give clues about the reliability
of the analysis. For SNP analysis, it is also imperative to keep
in mind that incorrect choice of the reference sequence (i.e.,
not closely enough related to the study population) will result
in postanalysis quality metrics that are similar (poor mapping
back to the reference, high masking percentage) to using se-
quences of suboptimal quality in the analysis.

As a matter of principle, only sequences that pass
minimum-quality standards should be included in WGS an-
alyses. However, in urgent outbreak settings it may be nec-
essary to use sequences of suboptimal quality for preliminary
analyses until repeat sequencing can be performed. In that
circumstance, the limitations and potential interpretation
pitfalls should be clearly communicated.

Practical Cluster Detection and Triage

Foodborne disease clusters are generally recognized by a
common exposure such as an event, or by the use of pathogen-
specific laboratory data such as WGS typing results that are
grouped in time or space. Given the complex ecology of
foodborne disease agents, clusters may be defined in an almost
infinite variety of ways. Practical cluster detection involves the
use of specific criteria to focus attention on signals most likely
to be actionable. These criteria typically include (1) a minimum
threshold for number of cases, (2) maximum allowed SNP or
allele differences between isolates in a presumed cluster based

on a particular agent and typing method, and (3) a specific time
interval. For example, parameters established by Moura et al.
for listeriosis clusters in France include (1) two or more cases,
(2) up to seven allele differences based on cgMLST, and (3) a 2-
year time period. The allelic difference threshold was empiri-
cally determined by comparing the genetic heterogeneity be-
tween epidemiologically related and unrelated isolates (Moura
et al., 2016, 2017).

The minimum threshold for number of cases to investigate
also decreases if matching food or environmental isolates are
available. Due to the high specificity of WGS, the matching
food source often proves to be the source of the outbreak. In
general, the decision on where to draw thresholds depends on
the specific agent (e.g., species, serotype) and its genetic
diversity, ecology, and prevalence. Severity of illness may
also contribute to cluster definitions. For example, two cases
of botulism occurring in a similar time frame or location may
be considered as a cluster without regard to genetic distance
due to large potential public health consequences, whereas
those criteria would probably not be used if the agent were
Salmonella enterica serotype undetermined. CDC estab-
lished working cgMLST cluster definitions in PulseNet for L.
monocytogenes, Salmonella, and STEC using foodborne and
zoonotic outbreaks initially identified through PFGE and
other mechanisms in parallel with WGS, empirically wid-
ening or narrowing cgMLST cluster definitions as needed to
capture the maximum number of events (CDC, unpublished
data). For example, a working definition for Salmonella in-
cludes ‡3 cases in a 60-day window with 0–10 allele dif-
ferences, where *2 cases are related by at most 5
differences. Genetic diversity varies by Salmonella serovar,
which helps inform triage decisions and ultimately may drive
establishment of serovar-specific working thresholds. The
allelic threshold was broadened slightly to capture zoonotic
disease outbreak clusters, which as described earlier typically
have greater allelic diversity than foodborne outbreaks.

Raising distance thresholds not only increases detection
sensitivity since more true outbreaks are captured, but also
decreases specificity due to the possible inclusion of mis-
classified cases. Such cases dilute measures of association,
thereby decreasing the likelihood of a successful investiga-
tion. At CDC historical sequences within 15 alleles of the
cluster are added to the cluster report to enhance hypothesis
generation. Due to the likelihood of persistent low-level food
contamination in food production environments and the high
specificity of WGS, the use of time as a defining criterion
may be re-evaluated. Clusters are also identified by real-time
examination of phylogenetic trees for groups of case isolates
that stand out from background cases. The process is cur-
rently visual, but may be amenable to statistical tools such as
fixation indices, which measure variation within and between
populations (Holsinger and Weir, 2009).

In the course of investigations, additional subtyping
methods such as wgMLST or hqSNP analysis may be per-
formed to explore alternative hypotheses. The use of WGS as
a primary surveillance tool is decreasing the size and in-
creasing the number of clusters that can be effectively in-
vestigated, thus escalating the need for triage. Cluster triage
is currently based on public health threat and recognition of
patterns in time, space, or case attributes that are suggestive
of previous outbreaks or patterns of disease that are different
than what is expected.

Take Home Messages:

� Although common exposures in outbreaks can be
identified to a high degree of certainty, association
cannot be automatically assumed for each individual
case-patient based on microbiology data alone ..
some additional evidence is required.
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Future Directions

WGS involves increasing the amount of data available to
detect and monitor trends by orders of magnitude, which will
likely lead to new prevention opportunities. It is expanding
the very concept of a ‘‘cluster’’ and an ‘‘outbreak,’’ and will
require us to reconsider traditional hypothesis generation
methods. Advanced analytical tools such as anomaly detec-
tion and machine learning are needed to integrate genomic
and epidemiology data streams to aid in interpretation and to
exploit the full potential of WGS.

Disclaimer

The findings and conclusions in this presentation are those
of the author and do not necessarily represent the views of the
Centers for Disease Control and Prevention.
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